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Abstract. We consider random extended surface perturbations in the transverse field Ising model
decaying as a power of the distance from the surface towards a pure bulk system. The decay may
be linked either to the evolution of the couplings or to their probabilities. Using scaling arguments,
we develop a relevance–irrelevance criterion for such perturbations. We study the probability
distribution of the surface magnetization, its average and typical critical behaviour for marginal
and relevant perturbations. According to analytical results, the surface magnetization follows a
log-normal distribution and both the average and typical critical behaviours are characterized by
power-law singularities with continuously varying exponents in the marginal case and essential
singularities in the relevant case. For enhanced average local couplings, the transition becomes
first order with a nonvanishing critical surface magnetization. This occurs above a positive threshold
value of the perturbation amplitude in the marginal case.

1. Introduction

Quenched, i.e., time-independent disorder has a strong influence on the nature of quantum phase
transitions which take place at zero temperature [1]. Many interesting features of the effect of
randomness can be observed in one-dimensional systems for which several exact results have
been obtained. Recently, the one-dimensional random transverse-field Ising model (TIM) has
been the subject of much interest. It is defined by the Hamiltonian

H = − 1
2

∑
l

(Jlσ
z
l σ

z
l+1 + hlσ

x
l ) (1.1)

whereσxl andσ zl are Pauli matrices at sitel and the exchange couplings,Jl , the transverse
fields,hl , are random variables.

For homogeneous independently distributed couplings and fields, Fisher [2, 3] obtained
many new results about the static properties of the random TIM in (1.1) using a real
space renormalization group method which is believed to become exact at large scales,
i.e., sufficiently close to the critical point. Later, Fisher’s conjectures have been checked
numerically [4–6] and new results have been obtained, especially about the dynamical
properties of the model at the critical point [7,8] as well as in the Griffiths phase [9,10].

In many physical situation the disorder is not homogeneous. A free surface or a defect in
the bulk can evidently induce a disorder which is inhomogeneously distributed in its vicinity. In
this paper we consider a random version of the Hilhorst–van Leeuwen (HvL) model [11–13]. In
this model, the couplings are modified near a free surface and the amplitude of the perturbation
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decays according to a power lawl−κ wherel denotes the distance from the surface. A relevance–
irrelevance criterion has been proposed for such smoothly inhomogeneous perturbations,
showing that marginal behaviour is obtained when the decay exponentκ = 1/ν whereν
is the correlation length exponent of the pure system [14–16]. The critical behaviour is then
characterized by local exponents which vary continuously with the perturbation amplitude.
For a slower decay the perturbation becomes relevant and, locally, power laws are replaced by
essential singularities.

We consider two types of random extended surface perturbations associated with a pure
bulk system.

For the first type of perturbation, the probabilitiespl andql are constant and the couplings
take the values:

Jl = J
[
1 +a1

(−1)fl

lκ

]
fl =

{
1 pl = 1

2

0 ql = 1
2

(model #1). (1.2)

The perturbation has a vanishing average and the couplings decay towards their constant bulk
valueJ .

For the second type, the decay is associated with the probabilities whereas the amplitudes
remain constant. The couplings follow the binary distribution:

Jl = J (1 +fla2) fl =
{

1 pl = l−κ
0 ql = 1− l−κ (model #2). (1.3)

The average coupling takes the same form as in the HvL model and one recovers asymptotically
a pure bulk system with couplings equal toJ .

The transverse field is always assumed to be constant,hl = h = 1, thus the bulk is critical
atJ = 1.

In this paper, we study the surface magnetic properties in the marginal situation which
occurs atκ = 1

2 for model #1 andκ = 1 for model #2 as well as for relevant perturbations
corresponding to slower decays.

The same type of problem with an aperiodic distribution of the couplings following some
substitution sequence has been considered recently [17].

The structure of the paper is the following. The relevance of random extended surface
perturbations is discussed in section 2. In section 3, analytical results about the surface
magnetization of the inhomogeneous TIM are presented. The two models of inhomogeneous
surface disorder are studied in section 4 for marginal perturbations and section 5 for relevant
ones. The results are discussed in section 6.

2. Relevance–irrelevance criterion

We begin with a discussion of the relevance of random extended surface perturbations in ad-
dimensional classical system. The unperturbed system has a free surface of dimensiond−1 at
l = 0, perpendicular to the unit vectoru, and the position vector is written asr = lu+r‖. The
layered perturbation, which couples to the operator densityφ(r) with bulk scaling dimension
xφ , is written as

−βV =
∑
r

A(l)φ(r) (2.1)
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whereβ = (kBT )
−1. The perturbation amplitudeA(l) in the different layers are independent

random variables such that:

[A(l)]av = 0 [A(l)A(l′)]av = A2
1

l2κ
δll′ (model #1)

[A(l)]av = A2

lκ
[A(l)A(l′)]av = A2

2

lκ
δll′ +

A2
2

(ll′)κ
(1− δll′) (model #2).

(2.2)

Thermodynamic perturbation theory, up to second order, gives the following correction to the
free energy:

−β1F = −β〈V 〉 + 1
2β

2[〈V 2〉 − 〈V 〉2]

=
∑
r

A(l)〈φ(r)〉 + 1
2

∑
r,r′

A(l)A(l′)Gφφ(r, r′) (2.3)

where〈· · ·〉 denotes a thermal average andGφφ is the connected two-point correlation function
of the operatorφ(r), both for the unperturbed system.

In the case of model #1, the average of the first-order correction vanishes. The relevance
of the perturbation is linked to the scaling behaviour of the amplitude in the average of the
second-order correction

−β[1F(2)]av = Ld−1

2

∑
l

∑
r‖

A2
1

l2κ
Gφφ(r‖) (2.4)

whereLd−1 is the surface of the layers. The average perturbation density has dimension 2d−1
wheras the correlation function has dimension 2xφ , thus, under a length rescaling by a factor
b = L/L′,

A′21
l′2κ
= b2d−1−2xφ

A2
1

l2κ
= b2yφ−1A

2
1

l2κ
(2.5)

and the second-order perturbation amplitude transforms as

A′21 = b2yφ−2κ−1A2
1 (2.6)

whereyφ = d−xφ is the bulk scaling dimension of the variable conjugate toφ. It follows that
the perturbation is marginal whenκ = κ1 = yφ − 1

2. It becomes relevant (irrelevant) when
κ < (>)κ1.

In the case of model #2, the average of the first-order correction is given by

−β[1F(1)]av =
∑
r

A2

lκ
〈φ(r)〉. (2.7)

The average perturbation density has now dimensiond so that

A′2
l′κ
= bd−xφ A2

lκ
= byφ A2

lκ
(2.8)

and

A′2 = byφ−κA2. (2.9)

The perturbation is marginal whenκ = κ2 = yφ , relevant (irrelevant) whenκ < (>)κ2. One
may notice that the average perturbation is of the HvL form, thus the relevance criterion is
the same for both models to first order in the perturbation amplitude. A scaling analysis of
the second-order correction contributed by the off-diagonal term in [A(l)A(l′)]av leads to the
same conclusion. Comparing the form of [A(l)A(l′)]av for both models, one concludes that the



3910 L Turban et al

diagonal second-order correction in model #2 scales asA2
1 in equation (2.6) with 2κ replaced

by κ, i.e., as

[A′22]diag= b2yφ−κ−1[A2
2]diag. (2.10)

It follows that the second-order diagonal correction is relevant whenκ < 2yφ − 1. It is more
dangerous than the first-order correction whenyφ > 1.

In the case of the two-dimensional Ising model with a thermal perturbation, such thatφ(r)

is the energy densityσrσr+u, one hasyφ = 1/ν = 1 and marginal behaviour is obtained for
κ1 = 1

2 andκ2 = 1 as indicated in the introduction.
The one-dimensional TIM, defined in equation (1.1) together with (1.2) or (1.3), which

corresponds to the extreme anisotropic limit of the two-dimensional classical systems discussed
here [18], belongs to the same universality class, i.e., the relevance of the perturbation is the
same for both problems.

3. Surface magnetization and surface correlations

Let us consider the imaginary time spin–spin autocorrelation function of the TIM

Gl(τ ) = 〈0|σ zl (τ )σ zl (0)|0〉 =
∑
i

|〈i|σ zl |0〉|2 exp[−τ(Ei − E0)] (3.1)

where|0〉 and|i〉 denotes the ground state and theith excited state ofH in equation (1.1), with
energiesE0 andEi , respectively. With symmetry-breaking boundary conditions, i.e., fixing
the spin at the other end of the chain, such thatσ zL = ±1, the ground state of the system is
degenerate and in the large-τ limit we have limτ→∞ Gl(τ ) = m2

l , with a local magnetization
given by

ml = 〈1|σ zl |0〉. (3.2)

To calculateml we use the standard methods of Lieb, Schultz and Mattis [19] and transform
H into a free-fermion Hamiltonian,

H =
L∑
q=1

εq(η
†
qηq − 1

2) (3.3)

in terms of the fermion creation (annihilation) operatorsη†
q (ηq). On a chain with lengthL and

free boundary conditions, the non-negative fermion excitationsεq satisfy the set of equations

εqψq(l) = −hlϕq(l)− Jlϕq(l + 1)

εqϕq(l) = −Jl−1ψq(l − 1)− hlψq(l)
(3.4)

with J0 = JL = 0. Introducing the 2L-dimensional vectorVq with components

Vq(2l − 1) = −ϕq(l) Vq(2l) = ψq(l) (3.5)

the relations in equation (3.4) lead to an eigenvalue problem for the tridiagonal matrix

T =



0 h1

h1 0 J1

J1 0 h2
. . .

. . .
. . .

JL−1
. . . hL
hL 0


. (3.6)

Taking the square ofT, odd and even components ofVq decouple and one recovers two separate
eigenvalue problems forϕ andψ. According to equation (3.4), changingϕq into−ϕq in Vq ,
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the eigenvector corresponding to−εq is obtained. Thus all the needed information is contained
in that part of the spectrum ofT with εq > 0. Later on we shall restrict ourselves to this sector.

Fixing the surface spin atl = L amounts to puttinghL = 0 in T, thus the lowest excitation
ε1 = 0 and the ground state of the system is degenerate.

Using Wick’s theorem, one may show that the local magnetizationml , with a fixed spin at
l = L, is given by a determinant [8]. For the surface spin, atl = 1, the expression simplifies
considerably and the surface magnetization takes the form [20]:

ms(L) = m1 = ϕ1(1) =
[

1 +
L−1∑
l=1

l∏
k=1

(
hk

Jk

)2 ]− 1
2

. (3.7)

This can be rewritten under the equivalent form

ms(L) = md
s(L)

L−1∏
l=1

(
Jl

hl

)
(3.8)

wheremd
s is the surface magnetization atl = L for the dual chain (for which the fields and the

couplings are exchanged,hl ↔ Jl) with a fixed spin now atl = 1.
We shall illustrate the usefulness of the last expression on the example of the HvL model

which corresponds to the Hamiltonian (1.1) withhl = 1 andJl = J (1 + al−κ). In the
marginal situation,κ = 1, the product in (3.8) asymptotically behaves as

∏L
l=1 Jl ∼ La at

the critical point,Jc = 1. Furthermore, whenL � 1, the couplings at the other end of
the chain are asymptotically unperturbed, thus one expects thatmd

s(L) ∼ L−
1
2 , as for the

homogeneous model at the ordinary transition. Then from (3.8) we deduce the continuously
varying dimension

xs
m = 1

2 − a a 6 1
2 (3.9)

which governs the scaling behaviour of the surface magnetization,ms(L) ∼ L−x
s
m. This

expression is valid only fora 6 1
2 sincexs

m must be non-negative. Whena > ac = 1
2,

xs
m = 0, i.e., the critical surface magnetization remains finite for the semi-infinite system.

It follows that our assumption about the scaling behaviour ofmd
s should be corrected in the

regime of first-order transition(a > 1
2). It has to compensate the contribution of the product

in (3.8), thusmd
s ∼ L−a. Since we are considering the magnetization of the dual chain, with

couplingsJ d
l (a) = 1/Jl(a) ' Jl(−a), this means that when the couplings are sufficiently

weak (a < − 1
2) nearl = 1, the finite-size-scaling behaviour of the critical magnetization at

l = L is anomalous.
When the perturbation is relevant,κ < 1, the product of the couplings leads to a stretched

exponential behaviour,

ms ∼ exp

(
a

1− κ L
1−κ
)

(3.10)

which is clearly valid only whena < 0. Otherwise the dual magnetization term contributes,
giving a size-independent result which corresponds to an ordered surface whena > 0 [20].

4. Marginal extended surface disorder

In this section we consider marginal random extended perturbations at the surface of the TIM.
The transverse field is uniform,hl = h = 1, and the distributions of the couplingsJl are given
by either (1.2) withκ = 1

2 or (1.3) withκ = 1 for marginal behaviour.
The finite-size-scaling behaviour of theaveragecritical surface magnetization atJ = 1 is

deduced for both models from equation (3.8) forL � 1. As for the HvL model, one expects
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Figure 1. Scaling dimension of the average surface
magnetization as a function of the perturbation amplitude
for model #1. The dotted line corresponds to the
analytical result in equation (4.1).

Figure 2. Scaling dimension of the average surface
magnetization as a function of the perturbation amplitude
for model #2. The dotted line corresponds to the
analytical result in equation (4.1).

md
s on the unperturbed end to scale asL−

1
2 , as long as the transition is continuous, while the

average of the product behaves as [
∏L
l=1 Jl ]av =

∏L
l=1[Jl ]av.

For model #1, [Jl ]av = J = 1 and [ms]av ∼ L− 1
2 , whereas

∏L
l=1[Jl ]av ∼ La2 for model

#2. Thus we obtain the following values for the scaling dimension of the average surface
magnetization:

[xs
m]av = 1

2 (model #1)

{
[xs

m]av = 1
2 − a2 a2 6 1

2

[xs
m]av = 0 a2 >

1
2

(model #2). (4.1)

As for the HvL model there is a finite average surface magnetization at the critical point for
strong enough local couplings, i.e., fora2 >

1
2 where limL→∞[ms]av > 0. In this first-order

regime the dual magnetization no longer scales asL−1/2. Actually, the correlation between
the two factors on the rhs of equation (3.8) modifies the scaling behaviour of the average of
the product, leading to [xs

m]av = 0. One may notice that since the bulk Ising system has a
correlation length exponentν = 1, equation (4.1) also gives the surface magnetic exponent
[βs]av = [xs

m]av.
The results for the average surface magnetization have been checked numerically,

considering 106 realizations of randomly inhomogeneous quantum spin chains and computing
the critical magnetizationms(L) given by (3.7) for chain sizesL = 25 to 214. The exponents
were deduced from an extrapolation of two-point approximants using the BST algorithm [21].
The variations of the average surface magnetic exponents, shown in figures 1 and 2, are in
excellent agreement with the expected ones.

Next we are going to study the probability distribution of the surface magnetization for
the two models. Again we start from equation (3.8) in which, for largeL,md

s, which refers to
the unperturbed end, is expected to scale asL−

1
2 as long as the transition on the other surface

is second order. Thus, in the second-order regime, the central limit theorem can be applied to
the random variable lnms + 1

2 lnL =∑L
l=1 ln(Jl) and lnms follows a normal distribution

PL(lnms) ' 1√
2πvar(lnms)

exp

[
− (lnms− [ln ms]av)

2

2var(lnms)

]
(4.2)

where var(lnms) = [(lnms − [ln ms]av)
2]av. This expression is valid forL � 1 and

lnms � 0. It does not correctly describe the rare events, governing the average behaviour,
which correspond to the tail of the distribution near lnms = 0.
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Figure 3. Probability distribution of lnms calculated on
106 samples for model #1. The perturbation amplitude
is a1 = 0.5 and the chain sizes areL = 26, 210 and 214

from right to left. The dotted curve corresponds to the
normal distribution in equation (4.2).

Figure 4. Probability distribution of lnms calculated on
106 samples for model #2 in the second-order regime.
The perturbation amplitude isa2 = −0.5 and the chain
sizes areL = 26 and 214 from right to left. The
dotted curve corresponds to the normal distribution in
equation (4.2). The actual distribution displays strong
periodic oscillations around the normal distribution.

Figure 5. Variation of the period of oscillations in the distribution
PL(lnms) for model #2 as a function of the marginal amplitudea2.
The points give the periods deduced from the numerical data for the
largest size,L = 214, and the dotted curve corresponds to| ln(1+a2)|.

The parameters of the distribution are easily deduced from equations (1.2) and (1.3) and
read:

[ln ms]av ' −1

2
lnL−

L∑
l=1

a2
1

2l
' −1

2
(1 +a2

1) lnL

var(lnms) ' a2
1 lnL

}
(model #1)

[ln ms]av ' −1

2
lnL +

L∑
l=1

ln(1 +a2)

l
' −

[
1

2
− ln(1 +a2)

]
lnL

var(lnms) ' ln2(1 +a2) lnL

}
(model #2).

(4.3)

The distributionsPL(lnms), obtained through numerical calculations on 106 samples for
different chain sizes, are compared with the analytical expressions in figures 3 and 4. The
agreement is quite good at large sizes, although the normal distribution is strongly modulated
for model #2. As shown in figure 5, the modulation involves a periodic function of period 1 in
the variable lnms/| ln(1 +a2)|, where 1 +a2 is the ratio of the two couplings in equation (1.3).
The oscillations are log-periodic in the variablems (see [22] for a recent review about log-
periodic phenomena).

The probability distribution is centred on [lnms]av = ln[ms]typ ∼ lnL, where [ms]typ is
the most probable ortypical value of the surface magnetization. Consequently, the typical
magnetization scales as a power ofL, [ms]typ ∼ L−[xs

m]typ, with a continuously varying typical
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Figure 6. Scaling dimension of the typical surface
magnetization as a function of the perturbation amplitude
a1 for model #1. The dotted curve corresponds to the
analytical result in equation (4.4).

Figure 7. Scaling dimension of the typical surface
magnetization as a function of the perturbation amplitude
for model #2. The dotted curve corresponds to the
analytical result in equation (4.4).

exponent given by:

[xs
m]typ = 1

2(1 +a2
1) (model #1)

[xs
m]typ = 1

2 − ln(1 +a2) a2 6
√

e− 1
[xs

m]typ = 0 a2 >
√

e− 1

}
(model #2).

(4.4)

In model #1, the typical surface magnetization vanishes continuously at the bulk critical
point for any value of the perturbation amplitude. In model #2, for strong enough local
couplings,a2 > [a2c]typ =

√
e−1' 0.6487, there is a first-order surface transition, the typical

surface magnetization remaining nonvanishing at criticality. In the range1
2 < a2 <

√
e− 1,

at the bulk critical point, [ms]av > 0 whereas [ms]typ = 0 whenL→ ∞, a behaviour which
is consistent with the fact that [lnms]av 6 ln[ms]av.

The numerical results for the scaling dimension of the typical surface magnetization are
shown in figures 6 and 7. Two-point finite-size approximants were extrapolated using the BST
algorithm and we used the same samples as for the average magnetization. The agreement
with the expressions given in (4.4) is quite good.

5. Relevant extended surface disorder

Let us now examine the modified surface critical behaviour induced by relevant extended
surface disorder which, according to the disussion of section 2, corresponds to a decay exponent
κ in equations (1.2) and (1.3) lower thanκ1 = 1

2 for model #1 andκ2 = 1 for model #2,
respectively.

Like in the marginal case, the average surface magnetization obtained by averaging
equation (3.8) would scale with an exponent [xs

m]av = 1
2 for model #1 if the dual magnetization

was unaffected by the perturbation. A numerical finite-size scaling study witha1 = 0.5 and
κ = 0.25, shows that the actual behaviour is a stretched exponential one since ln[ms]av ∼ L1/2,
as shown in figure 8. Thus the slowly decaying perturbation changes the critical behaviour
on the second surface. By symmetry, the behaviour is the same for negative values ofa1.
Numerical studies for other values ofκ indicate that the argument of the stretched exponential
involves the powerL1−2κ .

For model #2, taking only into account the product of the couplings, one obtains

[ms]av ∼ exp

[
a2

1− κ L
1−κ
]
. (5.1)
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Figure 8. Finite-size scaling of the average (dot-dashed lines)
and typical (dashed lines) surface magnetization with relevant
perturbations illustrating the stretched exponential behaviour. The
parameters area1 = 0.5 andκ = 0.25 for model #1 (circles),
a2 = −0.5 andκ = 0.5 for model #2 (squares). Averages were
taken over 106 samples.

Hence the average surface magnetization has a stretched exponential dependence onL for
negative values of the amplitudea2. The numerical data are in agreement with this behaviour
as shown in figure 8 fora2 = −0.5 andκ = 0.5. The value of the slope,−0.99± 0.04, is
close to the analytical result,−1. Thus the dual magnetization is likely to contribute here only
through a power ofL in front of the exponential.

When a2 > 0, the divergence of [ms]av with the system size signals that the dual
magnetization term in (3.8) can no longer be neglected. The surface transition is then first order.
This was checked numerically ata2 = 0.5 where the average critical surface magnetization
is indeed size-independent at largeL values. Contrary to the case of a marginal perturbation
where a mininum enhancement of the couplings was needed to maintain surface order at the
bulk critical point, here a first-order surface transition occurs for any positive value of the
perturbation amplitude. The same behaviour is obtained with the HvL model [20].

The probability distributionPL(lnms) can be obtained in the same way as in the marginal
situation when the transition is continuous, provided that lnms is dominated by the contribution
of the product in (3.8). Then one recovers the normal distribution of equation (4.2) with the
following parameters:

[ln ms]av ' −
L∑
l=1

a2
1

2l2κ
' − a2

1

2(1− 2κ)
L1−2κ

var(lnms) ' a2
1

1−2κ L
1−2κ

}
(model #1)

[ln ms]av '
L∑
l=1

ln(1 +a2)

lκ
' ln(1 +a2)

1− κ L1−κ

var(lnms) ' ln2(1+a2)

1−κ L1−κ

}
(model #2).

(5.2)

The numerical data, shown in figures 9 and 10, were deduced from 105 realizations and, as
above, witha1 = 0.5, κ = 0.25 for model #1 anda2 = −0.5, κ = 0.5 for model #2.

In the case of model #1, the shift with respect to the analytical results confirms a weak
relevant contribution of the dual magnetization term in (3.8). This is confirmed in figure 8
where the slope of ln[ms]typ versusL1−2κ is 0.266± 0.003 to be compared with the value
−0.25 given by (5.2).

The agreement is much better for model #2. Here the slope of ln[ms]typ versusL1−κ in
figure 8,−1.401± 0.002, has a smaller relative deviation from the expected value,−1.386.
One may notice that the probability distribution no longer displays the strong log-periodic
modulations observed in the marginal case.
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Figure 9. Probability distribution of lnms calculated on
105 samples for model #1 with a relevant perturbation.
The amplitude isa1 = 0.5 and the decay exponent
κ = 0.25. The chain sizes areL = 26, 210 and 214 from
right to left. The dotted curves correspond to the normal
distribution in equation (4.2) when the contribution of the
dual magnetization to lnms is neglected.

Figure 10. Probability distribution of lnms calculated on
105 samples for model #2 with a relevant perturbation.
The amplitude isa2 = −0.5 and the decay exponent
κ = 0.5. The chain sizes areL = 210, 212 and 214 from
right to left. The dotted curves correspond to the normal
distribution in equation (4.2) when the contribution of the
dual magnetization to lnms is neglected.

6. Discussion

The two models of extended surface disorder studied in this paper lead to a surface critical
behaviour which is quite similar to that obtained in the HvL model, with continuously varying
exponents in the marginal case and a stretched exponential behaviour for relevant perturbations.
The main differences are the non-self-averaging behaviour of the random models and the log-
periodicy obtained with model #2.

This log-periodic behaviour is easily understood if one considers the expression of the
surface magnetization in equation (3.8). At criticalityhl = J = 1 and, according to (1.3),
ln Jl is either 0 for unperturbed couplings or ln(1 + a2) for perturbed ones. A sampleα
with nα modified couplings contributes to the probability distributionPL(lnms) at a value
nα ln(1 + a2) + lnmd

sα of lnms. If the fluctuations of the last term from sample to sample
are sufficiently weak compared to the interval ln(1 + a2) a modulation with period ln(1 + a2)

is obtained forPL(lnms). The argument does not hold for model #1 since the values of the
couplings vary from site to site. The absence of modulation for model #2 with a relevant
perturbation gives a lower bound for the influence of the disorder on the second surface.

The connection to the HvL model can be clarified through the introduction of effective HvL
models describing either the average or the typical behaviour. As long as the size dependence
of the dual magnetization in equation (3.8) is the same as for an unperturbed surface, one may
introduce effective HvL interactions such that

[Jl ]
eff
av = [Jl ]av [Jl ]

eff
typ = exp([ln Jl ]av). (6.1)

Equations (1.2) and (1.3) then lead to:

[Jl ]
eff
av = J

[Jl ]eff
typ ' J

(
1− a2

1
2l2κ

) }
(model #1)

[Jl ]eff
av = J

(
1 + a2

lκ

)
[Jl ]eff

typ ' J
[
1 + ln(1+a2)

lκ

] } (model #2).

(6.2)

For model #1,κHvL = 2κ and the random perturbation is marginal atκ1 = 1
2. The effective

amplitude vanishes for averaged quantities whereas it is always negative, with [a]eff
typ = −a2

1/2,
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for typical quantities. Hence the surface transition is always continuous and the marginal
exponents in (4.1) and (4.4) follow from (3.9) with the appropriate effective amplitude.

For model #2,κHvL = κ leads toκ2 = 1. The effective amplitudes are [a]eff
av = a2 and

[a]eff
typ = ln(1 +a2). The continuously varying exponent can be deduced from the HvL results

when the transition is continuous, in this case even for relevant perturbations (compare (5.1),
(5.2) and (3.10)).

One may go further and conjecture the form of the scaling dimension of the surface energy
density in the second-order regime. Its valuexs

e = 2(1− a) for the HvL model [23] translates
into:

[xs
e]av = 2

[xs
e]typ = 2 +a2

1

}
(model #1)

[xs
e]av = 2(1− a2) a2 6 1/2

[xs
e]typ = 2[1− ln(1 +a2)] a2 6

√
e− 1

}
(model #2).

(6.3)

As already mentioned, the inhomogeneously disordered Ising quantum chain corresponds to the
extreme anisotropic limit of a two-dimensional classical Ising model with correlated disorder
along the rows parallel to its surface. It is easy to apply the considerations of section 2 to the
case where the perturbations of the different bonds (or sites) at a distancel from the surface
of a d-dimensional classical system are independent random variables distributed according
to (1.2) or (1.3), i.e., withd-dimensional inhomogeneous disorder.

For model #2, to first order, the perturbation amplitudeA2 transforms like in (2.9) with a
scaling dimensionyφ − κ when it couples to the fieldφ(r) in d dimensions. The off-diagonal
second-order correction has the same behaviour. The diagonal second-order correction, with
scaling dimension 2yφ − κ − d, cannot be more relevant than the first-order correction since
yφ 6 d. Thus the relevance of the perturbation remains the same as for the HvL model.

For model #1, however, the scaling dimension of the second-order perturbation amplitude
A2

1 in equation (2.6) changes toyA2
1
= 2yφ − 2κ − d. Thus a thermal perturbation is marginal

whenκ = 1/ν − d/2 = α/(2ν) whereα is the bulk specific heat exponent. For the two-
dimensional Ising model, withα = 0, the perturbation is irrelevant as soon asκ > 0 and
marginal for homogeneous disorder, a well-known result [24]. The two-dimensionalq-state
Potts model would be more interesting since marginal behaviour then corresponds toκ = 1

5

for q = 3 (ν = 5
6) andκ = 1

2 for q = 4 (ν = 2
3) [25]. One could then interpolate between

a marginal inhomogeneous perturbation and a relevant homogeneous one. Another case of
interest is the two-dimensionalq-state Potts model withq > 4. Here the pure system has a first-
order bulk transition [26, 27], the surface transition is continuous [28, 29] and homogeneous
disorder changes the bulk transition from first to second order [30–32]. Withν = 1

2 at the
discontinuity fixed point [33,34], the critical decay exponent for marginal behaviour isκ = 1.
Varyingκ from 1 to 0 could lead to interesting new phenomena.

To conclude, let us mention that it would be useful to adapt Fisher’s renormalization group
approach to the type of perturbations considered in this work.
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